Quantification of the electrostatic properties of the glomerular filtration barrier modeled as a charged fiber matrix separating anionic from neutral Ficoll.

نویسندگان

  • Carl M Öberg
  • Bengt Rippe
چکیده

In the current study we explore the electrostatic interactions on the transport of anionic Ficoll (aFicoll) vs. neutral Ficoll (nFicoll) over the glomerular filtration barrier (GFB) modeled as a charged fiber matrix. We first analyze experimental sieving data for the rat glomerulus, and second, we explore some of the basic implications of a theoretical model for the electrostatic interactions between a charged solute and a charged fiber-matrix barrier. To explain the measured difference in glomerular transport between nFicoll and aFicoll (Axelsson J, Sverrisson K, Rippe A, Fissell W, Rippe B. Am J Physiol 301: F708-F712, 2011), the present simulations demonstrate that the surface charge density needed on a charged fiber matrix must lie between -0.005 C/m(2) and -0.019 C/m(2), depending on the surface charge density of the solute. This is in good agreement with known surface charge densities for many proteins in the body. In conclusion, the current results suggest that electrical charge makes a moderate contribution to glomerular permeability, while molecular size and conformation seem to be more important. Yet, the weak electrical charge obtained in this study can be predicted to nearly totally exclude albumin from permeating through "high-selectivity" pathways in a charged-fiber matrix of the GFB.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced diffusion of charge-modified, conformationally intact anionic Ficoll relative to neutral Ficoll across the rat glomerular filtration barrier in vivo.

The glomerular filtration barrier (GFB) is commonly conceived as a negatively charged sieve to proteins. Recent studies, however, indicate that glomerular charge effects are small for anionic, carboxymethylated (CM) dextran vs. neutral dextran. Furthermore, two studies assessing the glomerular sieving coefficients (θ) for negative CM-Ficoll vs. native Ficoll have demonstrated an increased glome...

متن کامل

Molecular conformation and filtration properties of anionic Ficoll.

The physiology of glomerular permselectivity remains mechanistically obscure, despite its importance in human disease. Although electrical contributions to glomerular permselectivity have long been considered important, two recent reports demonstrated enhanced glomerular permeability to anionic versus neutral polysaccharides. The interpretation of these observations is complicated by confoundin...

متن کامل

Increased glomerular permeability to negatively charged Ficoll relative to neutral Ficoll in rats.

It is established that the glomerular filter sieves macromolecules based on their size, shape, and charge. Anionic proteins are thus retarded compared with their neutral or cationic counterparts. However, recent studies have indicated that charge effects are small, or even "anomalous," for polysaccharides. We therefore investigated the impact of charge on the glomerular permeability to polysacc...

متن کامل

Basal lamina secreted by MDCK cells has size- and charge-selective properties.

The role electrical charge plays in determining glomerular permeability to macromolecules remains unclear. If the glomerular basement membrane (GBM) has any significant role in permselectivity, physical principles would suggest a negatively charged GBM would reject similarly charged more than neutral species. However, recent in vivo studies with negative and neutral glomerular probes showed the...

متن کامل

Glomerular filtration is normal in the absence of both agrin and perlecan-heparan sulfate from the glomerular basement membrane.

BACKGROUND For several decades, it has been thought that the glomerular basement membrane (GBM) provides a charge-selective barrier for glomerular filtration. However, recent evidence has presented challenges to this concept: selective removal of heparan sulfate (HS) moieties that impart a negative charge to the GBM causes little if any increase in proteinuria. Removal of agrin, the major GBM H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 304 6  شماره 

صفحات  -

تاریخ انتشار 2013